Abstract
A snow burst event characterized by brief heavy snowfall affected Northeast China and caused serious social impact on 26 January 2017, with the snowband generally aligned with a northeast–southwest-oriented cold front. ECMWF reanalysis data were used to diagnose the possible trigger mechanism. Results showed there were two stages: (a) an initial stage far away from the Changbai Mountains, and (b) an enhancement stage under the influence of high terrain. During the initial stage, the coupling of low-level frontogenesis and a favorable convergence pattern caused strong upward motion, contributing to the release of instability. When the snowband approached the high terrain during the enhancement stage, the various instabilities were triggered by the low-level frontogenesis, terrain circulation, and strong wind shear associated with the low-level jet. Further, a modified Q-vector divergence including generalized potential temperature was calculated to diagnose the vertical motion. It showed that the frontogenesis terms contributed greatly to the negative Q-vector divergence along the moist isentropes, while the pseudo-vorticity terms played a role in the regions with strong wind shear associated with the low-level jet in the warm section, suggesting both were important in stimulating the ascending motion. The regions with negative Q-vector divergence had a close relationship with the vertical structure of convection, indicating the potential to track the development of the snowband in the next few hours.摘要2017年1月26日, 中国东北地区发生了一次短时强降雪过程.本文利用ECMWF再分析数据诊断该过程的可能触发机制.分析表明, 该过程可分两个阶段:初生阶段降雪远离高地形, 低层锋生和有利的辐散场配置激发上升运动释放不稳定;增强阶段雪带接近长白山, 低层锋生,地形环流以及与低空急流有关的风切变共同释放锋前不稳定.本文进一步计算了包含广义位温的修正Q矢量方程.结果表明, 锋生项对沿湿等熵线的负Q矢量散度贡献较大, 而拟涡度项在暖区强风切变区域中比较显著, 两项在激发上升运动中同等重要.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have