Abstract
Chronic ethanol (EtOH) abuse results in the development of steatosis, alcoholic hepatitis, and cirrhosis. Augmented TNF-alpha production by macrophages and Kupffer cells and signaling via the p55 TNF receptor have been shown to be critical for these effects of chronic EtOH; however, the molecular mechanisms leading to augmented TNF-alpha production remain unclear. Using cell culture models and in vivo studies we demonstrate that chronic EtOH results in increased TNF-alpha transcription, which is independent of NF-kappaB. Using reporter assays and chromatin immunoprecipitation we found that this increased transcription is due to increased IRF-3 binding to and transactivation of the TNF promoter. As IRF-3 is downstream from the TLR4 adaptor TIR-domain-containing adapter-inducing IFN-beta (Trif), we demonstrate that macrophages from Trif-/- mice are resistant to this dysregulation of TNF-alpha transcription by EtOH in vitro as well as EtOH-induced steatosis and TNF dysregulation in vivo. These data demonstrate that the Trif/IRF-3 pathway is a target to ameliorate liver dysfunction associated with chronic EtOH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.