Abstract

Growing evidence indicates that disrupting the microbial community that comprises the intestinal tract, known as the gut microbiome, can contribute to the development or severity of disease. As a result, it is important to discern the agents responsible for microbiome disruption. While animals are frequently exposed to a diverse array of environmental chemicals, little is known about their effects on gut microbiome stability and structure. Here, we demonstrate how zebrafish can be used to glean insight into the effects of environmental chemical exposure on the structure and ecological dynamics of the gut microbiome. Specifically, we exposed forty-five adult zebrafish to triclosan-laden food for four or seven days or a control diet, and analyzed their microbial communities using 16S rRNA amplicon sequencing. Triclosan exposure was associated with rapid shifts in microbiome structure and diversity. We find evidence that several operational taxonomic units (OTUs) associated with the family Enterobacteriaceae appear to be susceptible to triclosan exposure, while OTUs associated with the genus Pseudomonas appeared to be more resilient and resistant to exposure. We also found that triclosan exposure is associated with topological alterations to microbial interaction networks and results in an overall increase in the number of negative interactions per microbe in these networks. Together these data indicate that triclosan exposure results in altered composition and ecological dynamics of microbial communities in the gut. Our work demonstrates that because zebrafish afford rapid and inexpensive interrogation of a large number of individuals, it is a useful experimental system for the discovery of the gut microbiome’s interaction with environmental chemicals.

Highlights

  • The gut-associated microbiome performs vital functions in the gastrointestinal tract, which prevents colonization with pathogens[1,2], stimulates immune system development and function[3,4], and produces micronutrients utilized by the host[5]

  • Triclosan exposure is associated with shifts in microbial community structure We established a cross-sectional experimental design aimed at determining whether shortterm, repeated exposure to triclosan can affect adult zebrafish gut microbial communities (Fig 1)

  • A growing body of evidence suggests that triclosan might alter host physiology [22,42], disrupt environmental microbial communities[45,46], and increase antimicrobial and antibiotic resistance in the environment and in laboratory bacterial strains[38,71]

Read more

Summary

Introduction

The gut-associated microbiome performs vital functions in the gastrointestinal tract, which prevents colonization with pathogens[1,2], stimulates immune system development and function[3,4], and produces micronutrients utilized by the host[5]. Humans are exposed to a diverse array of chemicals on a daily basis through contact with the environment While some of these exposures may be innocuous or even beneficial (e.g., dietary micronutrients), others have been associated altered host physiology and chronic disease [16,17]. The metabolism of other dietary chemicals, such as L-carnitine, can lead to metabolites that are associated with disease[7] Heavy metals, such as arsenic, lead, and cadmium perturb microbial community composition and metabolic profiles in mice[19] and are associated with altered immune responses, and gut barrier function[20,21]. The impact of exposure to these compounds, or their derivatives, on the structure and function of the microbiome remains unclear

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.