Abstract

The historical paradigm of the deep ocean as a biological 'desert' has shifted to one of a 'rainforest' owing to the isolation of many novel microbes and their associated bioactive compounds. To explore the potential of the bioactive compounds in our marine microbial natural product library, we screened it for the selective cytotoxicity of six different cancer cell lines to human normal lung fibroblast cell line HLF. The crude extract from a marine-derived fungal strain showed notable selectivity against cancer cell lines. For a bioactivity-guided fractionation and purification, a novel cyclopentenone, (-)-(4R *, 5S *)-3-ethyl-4,5-dihydroxycyclopent-2-enone (1, trichoderone), and a known compound with new activity, cholesta-7,22- diene-3 beta,5 alpha,6 beta-triol (2), were identified from a marine Trichoderma sp. that was isolated from the deep sea sediment of the South China Sea. Their structures were determined by NMR and MS data analyses. Trichoderone (1) displayed potent cytotoxicity against a panel of six cancer cell lines, whereas it did not show much cytotoxicity against normal human lung fibroblast cell line HLF even at a concentration of 7.02 mM. The selectivity index (SI) value for 1 was greater than 100. To the best of our knowledge, both compounds were isolated from marine fungi for the first time. They also exhibited bioactivities against HIV protease and Taq DNA polymerase. Optimization of the compounds would shed new light on treating cancer and infectious diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call