Abstract

Additive manufacturing (AM) holds significant potential in transforming medical applications, with a particular focus on polyetheretherketone (PEEK) and its derivatives, collectively known as poly-aryl-ether-ketone (PAEK) materials. Advances in AM precision have paved the way for the successful 3D printing of high-performance thermoplastics like PEEK, offering new prospects in load-bearing medical applications. This systematic review comprehensively assesses recent scientific literature concerning the tribo-mechanical properties and bioactivity of additively manufactured PAEK materials, with a specific emphasis on PEEK, for load-bearing medical uses. Despite substantial research into AM of metallic biomaterials, knowledge gaps persist regarding AM processing parameters, structure-property relationships, biological behaviours, and implantation suitability of PAEKs. This review bridges these gaps by analysing existing literature on the tribo-mechanical properties and bioactivity of additively manufactured PAEK materials, providing valuable insights into their performance in load-bearing medical applications. Key aspects explored include printing conditions, strength limitations, and outcomes of in-vitro and in-vivo evaluations. Through this systematic review, we consolidate current knowledge, delivering essential information for researchers, clinicians, and manufacturers involved in advancing additively manufactured PAEK materials for load-bearing medical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call