Abstract

Aerodynamic slider bearings are currently used in various types of turbomachinery. Many such systems perform at increasingly faster speeds and may operate in the supersonic regime. Although there is extensive research on compressible lubrication extrapolated to high-speeds, very little of it addresses the potential supersonic nature of the flow. It is well known in compressible flow that many of the tendencies of subsonic flow actually reverse themselves as the singularity at Mach one is traversed. Thus, examination of this high-speed regime may yield some unanticipated results. The behavior of a thin film of air in the supersonic regime is studied in the two-dimensional flow case with rigid sliding surfaces. The one-dimensional bearing studied has a dual profile consisting of an inlet region converging wedge of constant slope and an exit region of constant gap. Two approaches are compared: the solution of a modified Reynolds equation, and the solution to a version of Navier–Stokes equations adapted to thin films. The results show that the modified Reynolds equation approach, which is useful to describe the behavior of lubricating fluids at high subsonic speeds may be inadequate in the supersonic regime. The present studies show the absence of shock and expansion wave phenomena for cases in which the film thickness ratio does not exceed 0.01.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call