Abstract

In this paper, the non-Newtonian effects of lubricants on the static characteristics of one-dimensional, high-speed slider bearings are examined theoretically by considering the fluid inertia effects. In the derivation of the modified Reynolds equation, the fluid inertia term in the momentum equation for the non-Newtonian lubricant films is averaged over the film thickness, and the Rabinowitsch empirical model is used as a constitutive equation for non-Newtonian fluids. Applying the modified Reynolds equation to the one-dimensional slider bearings and solving the equation analytically based on the perturbation technique, the film pressure, load carrying capacity, friction force, and inlet flow rate are obtained under various values of the dimensionless nonlinear factor and film thickness ratio. The combined effects of fluid inertia and non-Newtonian characteristics on these static characteristics of lubricants are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.