Abstract
PurposeThis paper aims to obtain high mechanical strength and good self-lubricating property of iron-based powder metallurgy materials. A new type of bilayer material with dense substrate and porous surface was proposed in this paper to obtain high strength and good self-lubricating property.Design/methodology/approachThe materials were prepared by powder metallurgy. Their friction and wear properties were investigated with an end-face tribo-tester. Energy dispersive spectrometer, X-ray diffraction and the 3D laser scanning technologies were used to characterise the tribological properties of materials. The tribological and bearing mechanisms of the monolayer and bilayer materials were compared.FindingsThe results show that adding proper TiH2 can effectively improve the porosity and hardness. With the TiH2 content increased from 0 to 4 per cent, the average friction coefficients increase slowly, and the wearability decreases first and then increases. When containing 3.5 per cent TiH2, high strength and good self-lubrication characteristics are obtained. Besides, the tribological properties of monolayer materials are better than those of bilayer materials when the load is between 980 and 1,470 N, while the opposite result is obtained under the load varied from 1,470 to 2,450 N. In the bilayer material, the porous oil surface can lubricate well and the dense substrate can improve the mechanical property. So, its comprehensive tribological and mechanical properties are better than those of monolayer material.Originality/valueThe friction and wear properties of a new type bilayer materials were investigated. And their tribological mechanisms were proposed. This work can provide a theoretical reference for developing high-performance iron-based oil materials under boundary lubrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.