Abstract
The torque-tension relationship of threaded fasteners affects almost all engineering disciplines. Tribological processes at fastener interfaces manifest as the system's friction coefficient. Lubrication-related influences are usually described empirically using K or μ. The drive towards lightweight fastener materials in engineering systems and lubricants with reduced environmental impact is challenging existing knowledge and industrial practice in a range of applications, many safety critical. More comprehensive understanding is needed to achieve repeatable friction during assembly and re-assembly, resistance to loosening and fretting during operation, and effective anti-seize for disassembly with a growing range of materials and lubricants. The lubricants considered showed three predominant lubrication mechanisms: plastic deformation of metal powders; burnishing/alignment of molybdenum disulphide, MoS2; and adhering/embedding of non-metal particles. Multivariate analysis identified key sensitivities for these mechanisms. Assembly generated changes at fastener surfaces and in the lubricating materials. Re-assembly exhibited significant reductions in friction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.