Abstract
Ceramic seals are widely used in many severe applications such as in corrosive, high temperature and highly loaded situations especially in hot chemical water-based extreme environments for automobile water pumps. Presently, polymeric materials are used as the counter part for alumina ceramic seals to reduce the ceramic-to-ceramic wear. As a result, leaks are very commonly observed from water pump during services. Consequently, it is needed to improve the surface properties of the ceramic seals using a surface modification technique such as a thin film coating process to meet the increasing demand of more stability, more durability, and lower friction of coefficient in those extreme environments. To meet these challenges, we have applied DLC (diamond-like carbon) coatings on alumina using a PIID (plasma immersion ion deposition) technique intended for seal applications. The DLC-coated specimens were tested under a wide range of temperature conditions, from room temperature up to 400°C, using a high temperature pin-on-disk tribo-tester. After that, the wear-tested specimens were analyzed using SEM with EDS to characterize the worn surfaces. Morphological changes of the DLC coated surfaces before and after the wear tests were studied. Under certain deposition conditions DLC performed very well up to 400°C. However, under other conditions, DLC failed catastrophically. In this paper we will present the friction and wear characteristics of the DLC-coated alumina. Finally, we will discuss the failure mode of DLC coatings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have