Abstract

In this work some carbon-based coatings were studied by atomic force microscopy (AFM) and lateral force microscopy (LFM) techniques in order to evaluate their microstructure and friction properties at the micro and nanoscale. With this aim, four samples were prepared by magnetron sputtering: an amorphous carbon film (a–C), two nanocomposites TiC/a–C with different phase ratio (∼1:1 and ∼1:3) and a nanocrystalline TiC sample. Additionally, a highly oriented pyrolytic graphite (HOPG) and an amorphous hydrogenated carbon coating (a-C:H) were included to help in the evaluation of the influence of the roughness and the hydrogen presence respectively. The topography (roughness) of the samples was studied by AFM, whereas LFM was used to measure the friction properties at the nanoscale by two different approaches. Firstly, an evaluation of possible friction contrast on the samples was done. This task was performed by subtraction of forward and reverse images and lately confirmed by the study of lateral force profiles in both directions and the histograms of the subtraction images. Secondly, an estimation of the average friction coefficient over the analysed surface of each sample was carried out. To take into account the tip evolution/damaging, mica was used as a reference before and after each sample (hereafter called sandwich method), and samples-to-mica friction ratios were calculated. The LFM was shown to be a useful tool to characterise a mixture of phases with different friction coefficients. In general, the friction ratios seemed to be dominated by the amorphous carbon phase, as it was impossible to distinguish among samples with different proportions of the amorphous phase (friction ratios between 1.5 and 1.75). Nevertheless, it could be concluded that the differences in friction behaviour arose from the chemical aspects (nature of the phase and hydrogen content) rather than surface characteristics, since the roughness (Ra values up to 5.7 nm) does not follow the observed trend. Finally, the Ogletree method was employed in order to calibrate the lateral force and estimate the friction coefficient of our samples. A good agreement was found with macroscopic and literature values going from ∼0.3 for TiC to ∼0.1 for pure carbon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call