Abstract

As a variation of atomic/scanning force microscopy (AFM/SFM), lateral force microscopy (LFM) relies on the torsional deformation of the AFM cantilever upon lateral forces acting between tip and sample surface. LFM enables imaging of frictional properties of the surfaces of materials, thin films or monolayers at a high spatial resolution. Furthermore, LFM is increasingly used to study the effect of shear loading on nanostructures or nanoparticulates. Albeit a large variety of applications have been demonstrated and the measurement mode is implemented in most commercially available AFM instruments, LFM seems to suffer from the lack of reliable and established calibration methods for lateral forces. However, general acceptance of LFM requires quantification coupled with a solid understanding of the sources of uncertainty. This chapter reviews the available experimental calibration methods. In addition to a description of these methods, a table including information on the key characteristics is provided as well as an overview of the basic equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.