Abstract

New lubricants based on vegetable oil were developed in this study. Different blends of canola oil mixed with fully synthetic two stock engine oils were developed (0, 20%, 40%, 60%, and 80% of synthetic oil). The viscosity of the prepared blends was determined at different temperatures (20°C–80°C). Tribological experiments were conducted to investigate the effect of the newly developed oil on the wear characteristics of mild steel material compared with stainless steel when subjected to adhesive wear loading. The weight loss (WL) and the specific wear rate (SWR) of the mild steel using each of the prepared lubricants were determined. Scanning electron microscopy was used to examine the worn surface of the mild steel. The results revealed that pure canola oil as a lubricant performed competitively against a blend of 80% synthetic and 20% canola oils. The viscosity of the canola oil and its various blends with synthetic oil are controlled by the environmental temperature since an increased temperature reduces the viscosity. Also, the experimental results revealed that operating parameters play the main role in controlling the wear behavior of mild steel since increasing the sliding distances increases the weight loss. The specific wear rate exhibited a steady state after about 5 km sliding distance, and different blends influenced the applied loads and velocity differently. The mixing ratio of canola and syntactic oil was not particularly significant since the pure canola oil exhibited competitive wear performance compared with the blends. However, an intermediate mixing ratio (40%–60% synthetic oil mixed with 60%–40% canola) can produce a slightly low specific wear rate among other things.

Highlights

  • Major concerns have emerged over the increasing use of conventional fossil fuels in industrial products and applications. e use of vegetable oil, an important discovery, has been the focus of many contemporary technological and industrial researchers

  • Petroleum byproducts were the only ones used for lubrication [5]. is is, a thing for the past. e emergence of the use of vegetable oil has inspired the extension of this knowledge to the extent that recent discoveries show that it is a better alternative for conventional lubricants

  • Conventional lubricants having numerous advantages have their share of disadvantages [6]. e fact that conventional fossil fuel petroleum is in abundance is worth noting

Read more

Summary

Tribological Behavior of Mild Steel under Canola Biolubricant Conditions

Received 1 July 2021; Revised 22 August 2021; Accepted 28 September 2021; Published 16 October 2021. E weight loss (WL) and the specific wear rate (SWR) of the mild steel using each of the prepared lubricants were determined. E results revealed that pure canola oil as a lubricant performed competitively against a blend of 80% synthetic and 20% canola oils. The experimental results revealed that operating parameters play the main role in controlling the wear behavior of mild steel since increasing the sliding distances increases the weight loss. E specific wear rate exhibited a steady state after about 5 km sliding distance, and different blends influenced the applied loads and velocity differently. E mixing ratio of canola and syntactic oil was not significant since the pure canola oil exhibited competitive wear performance compared with the blends. An intermediate mixing ratio (40%–60% synthetic oil mixed with 60%–40% canola) can produce a slightly low specific wear rate among other things

Introduction
Methodology
Results and Discussion
Percentage of fully synthetic Castrol oil
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call