Abstract

Abstract In the age of light weight, aluminum alloys are used as one of the most predominant materials in automotive and aircraft industries. But their applications are being restricted where tribological (relative motion between parts) is major issue. Thus, coating metallic substrates i.e. aluminum alloys with ceramic powders is an effective solution in prolonging the component service life. The present investigation aims at changing the surface morphology by introducing carbide powders (180 µm) of boron, silicon and tungsten on to AA 6061 Al alloy (widely used in automobile components) using friction stir processing. Fabricated surface metal matrix composites (SMMCs) exhibited better wear resistance compared to the base metal. SMMC (127VHN) consisting B4C as reinforcement has shown superior wear resistance among other SMMCs made from WC and SiC respectively. From the SEM analysis, it is clearly observed that abrasion wear is the primary cause for less wear resistance in AA 6061 aluminium alloy while as adhesive wear mechanism is found to be predominant one in all other surface composites resulting in the increase of wear resistance. Thus, it is recommended to use B4C as reinforcing material for surface modification of AA6061 aluminum alloy when compared with other reinforcing materials of WC and SiC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.