Abstract

Friction stir processing (FSP) is applied to create surface metal–matrix composites (SMMCs). This study aims to develop defect-free surface composites on AA2024 aluminum alloy with structural hardening (T351). It focuses on the effect of the number and direction of FSP passes on the particle distribution and microstructural modifications of the processed region, and their relationship with wear behavior of the composite layers. Results confirm that FSP can fabricate an SMMC with an acceptable homogeneous dispersion of particles. An electron backscatter diffraction (EBSD) technique is used to investigate the evolution of the grain size through the different regions of the friction stir-processed (FSPed) samples, indicating a significant grain size reduction in the nugget zone because of dynamic recrystallization. The surface properties are studied by measuring hardness and resistance to sliding wear. Although SMMC hardness at the nugget is similar to the base material, it demonstrates improved wear resistance. Under the sliding conditions of this study, specific wear rate is reduced significantly (between 24 and 40 pct) with respect to the as-received aluminum alloy. Moreover, the worn tracks indicate the same wear mechanisms operating simultaneously in both materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.