Abstract

In this study a series of polyimide (PI) films were synthesized from fluorinated and nonfluorinated monomers which contained diamines and dianhydrides. The influence of fluorine-containing groups on the glass transition temperature (T g) and tribological properties of the PI films was investigated. The wear mechanism for the different kinds of PI polymers was comparatively discussed. T g was characterized by dynamic mechanical analysis and the tribological changes were evaluated by friction and wear tests as well as scanning electron microscopy (SEM) analysis of the worn surfaces. Fourier transform infrared (FTIR) has been used to study the structures of the PI polymers. Experimental results indicated that the fluorine groups influenced the thermal behavior (T g) of the PI films. Nonfluorinated PI films have lower friction coefficient and wear rate compared with the fluorinated ones. It was also found that the tribological properties of the PI films were closely related with the applied load. The friction coefficients and wear rates reduced with increasing the applied load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.