Abstract

Abstract Carbon fabric (CF) was modified with strong HNO3 etching, plasma bombardment, and anodic oxidation, respectively. The modified carbon fabric was then used to prepare carbon fabric composites (CFC) by dip-coating in a phenolic resin and the relative mass content of carbon fabric in the carbon fabric composites is 65%. The friction and wear behaviors of the carbon fabric composites were evaluated with a Xuanwu-III high temperature friction and wear tester, and their mechanical properties were evaluated on a Shimadzu™ universal materials testing machine, respectively. The changes in the chemical compositions of the unmodified and modified carbon fabrics were analyzed by means of X-ray photoelectron spectroscopy. The morphologies of the worn surfaces of the unmodified and modified carbon fabric composites were analyzed by means of scanning electron microscopy. It was found that the friction-reduction and anti-wear properties of the carbon fabric composites were improved by anodic oxidation, plasma bombardment, and strong HNO3 etching, so were the mechanical properties and load-carrying capacity. The composite made of the carbon fabric modified with anodic oxidation showed the best tribological and mechanical properties, and the one made of the carbon fabric etched with HNO3 had the poorest tribological and mechanical properties among the three kinds of the tested composites. The active groups were produced during the oxidation process, which contributed to strengthen the bonding strength between the carbon fabric and the adhesive and hence to improve the tribological and mechanical properties of the composites made of the modified carbon fabric. The friction and wear properties of the carbon fabric composites were closely dependent on the environmental temperature. Namely, the wear rates of the composites at elevated temperature above 180 °C were much larger than that below 180 °C, which was attributed to the degradation and decomposition of the adhesive resin at excessively elevated temperature. Moreover, the composite made of the carbon fabric modified with anodic oxidation had better thermal stability than the one made of the unmodified carbon fabrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.