Abstract

Micromovements that occur in the joint between dental prostheses and implants can lead to wear-induced degradation. This process can be enhanced by corrosion in the oral environment influenced by the presence of solutions containing fluoride. Moreover, the eventual galvanic interactions between NiCr and Ti alloys can accelerate the wear-corrosion process. In this work, the tribocorrosion process of Ti6Al4V and NiCr alloys used in dental implant rehabilitations immersed in fluoride solutions at different pH values was investigated. The galvanic interaction effect between the alloys was also assessed. Tribocorrosion tests in corrosive media were performed with isolated Ti6Al4V and NiCr alloys, followed by testing with both alloys in contact. The media selected were based on fluoride concentrations and pH values that are possible to be found in oral environments. Analysis of the surfaces after the tribocorrosion tests was carried out using confocal laser microscopy. The wear profile and volume losses were determined by confocal measurements. It was concluded that the galvanic interaction between the alloys increased the tribocorrosion resistance of Ti6Al4V, compared with that of the isolated Ti6Al4V alloy. Ti6Al4V coupled with NiCr reduced the electrochemical potential decay during sliding. The increased resistance was explained by the electrochemical shift of the Ti6Al4V potential from active dissolution to the passive domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.