Abstract

This study investigates the laser cladding of Co and Ni powders onto Ti–6Al–4 V substrates, varying the admixed percentages while adjusting laser processing parameters. The influence of nickel and cobalt contents on the microstructure, phase composition, and electrochemical behavior of the laser-clad Ti–6Al–4 V coatings were analyzed. Coating morphology and phases were characterized using scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS), and X-ray diffractometry (XRD), respectively. The corrosion resistance of Ti–6Al–4 V, both with and without Ni–Co additions, in 0.5 M H2SO4 was evaluated using potentiodynamic polarization technique. Results indicated that the coatings exhibited excellent metallurgical compatibility with the substrate. Additionally, the high scan speed laser-clad samples showed enhanced corrosion resistance compared to those processed at low speeds. The potentiodynamic polarization analysis revealed passive behavior in all specimens, with higher cobalt content notably enhancing passivity and corrosion resistance by suppressing the anodic reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.