Abstract

Titanium and its alloys are widely used in orthopedic and dental implants, however, some major clinical concerns such as poor wear resistance, lack of bioactivity, and bone resorption due to stress shielding are yet to be overcome. In order to improve these drawbacks, highly porous Ti samples having functionalized surfaces were developed by powder metallurgy with space holder technique followed by anodic treatment. Tribocorrosion tests were performed in 9g/L NaCl solution using a unidirectional pin-on-disc tribometer under 3N normal load, 1Hz frequency and 4mm track diameter. Open circuit potential (OCP) was measured before, during and after sliding. Worn surfaces investigated by field emission gun scanning electron microscope (FEG-SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Results suggested bio-functionalized highly porous samples presented lower tendency to corrosion under sliding against zirconia pin, mainly due to the load carrying effect given by the hard protruded oxide surfaces formed by the anodic treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call