Abstract
The present study examined different concentrations of the butylated hydroxytoluene (BHT) inhibitor on the kinetics of conversion, polymerization shrinkage stress, and other correlated physicochemical properties of experimental resin composites (ERC). A model composite was formulated with 75 wt% filler containing 0.5 wt% camphorquinone and 1 wt% amine with BHT concentrations of 0.01 wt% (BHT-0.01); 0.1 wt% (BHT-0.1); 0.25 wt% (BHT-0.25); 0.5 wt% (BHT-0.5); 1 wt% (BHT-1), and control (no BHT). They were tested on polymerization shrinkage stress (PSS; n = 5), degree of conversion (DC; n = 3), maximum polymerization rate (RpMAX; n = 5), water sorption (Wsp; n = 0), and solubility (Wsl; n = 10), flexural strength (FS; n = 10), flexural modulus (FM; n = 10), Knoop microhardness (KH; n = 10), and microhardness reduction (HR; n = 10). Data concerning these tests were submitted to one-way ANOVA and Tukey's test (α = 0.05; β = 0.2). BHT-0.25, BHT-0.5, and BHT-1 showed a gradually significant decrease in PSS (p = 0.037); however, BHT-1 demonstrated a decrease in the physicochemical properties tested. Thus, within the limitations of this study, it was possible to conclude that BHT concentrations between 0.25 and 0.5 wt% are optimal for reducing shrinkage stress without affecting other physicochemical properties of ERCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.