Abstract
Tire waste additions to sand enhance the shear strength of sand for embankments. Granular and fiber shape tire wastes and their mixture with sand under drained and undrained conditions were tested in triaxial compression apparatus and modeled using neural networks (NN). In the experimental study, tire crumb and tire buffings inclusions were used at varying contents as soil reinforcement. Both quick tests and consolidated drained (CD) triaxial tests were performed to analyze the effects of tire content, tire shape, and tire aspect ratio on the shear strength of sand. Then, this extensive experimental database obtained in laboratory was used in training, testing, and prediction phases of three neural network-based soil models. The input variables in the developed NN models are tire wastes content, tire wastes type, test type, effective stress, and axial strain, and the output is the deviatoric stress. The accuracy of proposed models seems to be satisfactory. Furthermore, the proposed models are also presented as simple explicit mathematical functions for further use by researchers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Neural Computing and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.