Abstract

The type $A_n$ root polytope $\mathcal{P}(A_n^+)$ is the convex hull in $\mathbb{R}^{n+1}$ of the origin and the points $e_i-e_j$ for $1 \leq i < j \leq n+1$. Given a tree $T$ on vertex set $[n+1]$, the associated root polytope $\mathcal{P}(T)$ is the intersection of $\mathcal{P}(A_n^+)$ with the cone generated by the vectors $e_i-e_j$, where $(i, j) \in E(T)$, $i < j$. The reduced forms of a certain monomial $m[T]$ in commuting variables $x_{ij}$ under the reduction $x_{ij} x_{jk} \to x_{ik} x_{ij} + x_{jk} x_{ik} + \beta x_{ik}$, can be interpreted as triangulations of $\mathcal{P}(T)$. If we allow variables $x_{ij}$ and$x_{kl}$ to commute only when $i, j, k, l$ are distinct, then the reduced form of $m[T]$ is unique and yields a canonical triangulation of $\mathcal{P}(T)$ in which each simplex corresponds to a noncrossing alternating forest. Le polytope des racines $\mathcal{P}(A_n^+)$ de type $A_n$ est l'enveloppe convexe dans $\mathbb{R}^{n+1}$ de l'origine et des points $e_i-e_j$ pour $1 \leq i < j \leq n+1$. Étant donné un arbre $T$ sur l'ensemble des sommets $[n+1]$, le polytope des racines associé, $\mathcal{P}(T)$, est l'intersection de $\mathcal{P}(A_n^+)$ avec le cône engendré par les vecteurs $e_i-e_j$, où $(i, j) \in E(T)$, $i < j$. Les formes réduites d'un certain monôme $m[T]$ en les variables commutatives $x_{ij}$ sous la reduction $x_{ij} x_{jk} \to x_{ik} x_{ij} + x_{jk} x_{ik} + \beta x_{ik}$ peuvent être interprétées comme des triangulations de $\mathcal{P}(T)$. Si on impose la restriction que les variables $x_{ij}$ et $x_{kl}$ commutent seulement lorsque les indices $i, j, k, l$ sont distincts, alors la forme réduite de $m[T]$ est unique et produit une triangulation canonique de $\mathcal{P}(T)$ dans laquelle chaque simplexe correspond à une forêt alternée non croisée.

Highlights

  • This work was initially inspired by an exercise in Stanley’s Catalan Addendum (S, Exercise 6.C6), which calls on us to consider the monomial w = x12x23 · · · xn,n+1 in commuting variables xij

  • The proof of Theorem 1 relies on relating the triangulations of a root polytope P(T ) to reduced forms of a monomial m[T ] in variables xij, which we define

  • X12x23 · · · xn,n+1 has a unique reduced form in algebra B and asked for a nice combinatorial proof of this fact. We provide such a proof, as the uniqueness of the reduced form of w is a special case of our results

Read more

Summary

Introduction

The proof of Theorem 1 relies on relating the triangulations of a root polytope P(T ) to reduced forms of a monomial m[T ] in variables xij, which we define. The “reason” for allowing xij and xkl to commute only when i, j, k, l are distinct might not be apparent at first, but as we will prove in section 5 it insures that, unlike in the commutative case, there are unique reduced forms for a natural set of monomials. Theorem 2 Let T be a noncrossing tree on vertex set [n + 1], and PnA a reduced form of mA[T ]. PnB(xij , β = 0) = xT0 , T0 where the sum runs over all noncrossing alternating spanning trees T0 of Twith lexicographic edgelabels (to be defined in section 5) and xT0 is defined to be the noncommutative monomial n l=1 xil ,jl if.

Reductions in terms of graphs
Acyclic root polytopes
Reductions in the noncommutative case
Proof Idea of Theorems 1 and 2
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call