Abstract

We study the Schlesinger system of partial differential equations in the case when the unknown matrices of arbitrary size (p×p) are triangular and the eigenvalues of each matrix form an arithmetic progression with a rational difference q, the same for all matrices. We show that such a system possesses a family of solutions expressed via periods of meromorphic differentials on the Riemann surfaces of superelliptic curves. We determine the values of the difference q, for which our solutions lead to explicit polynomial or rational solutions of the Schlesinger system. As an application of the (2×2)-case, we obtain explicit sequences of rational solutions and of one-parameter families of rational solutions of Painlevé VI equations. Using similar methods, we provide algebraic solutions of particular Garnier systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.