Abstract

This manuscript explores the extensions and classifications of the bosonic supersymmetric systems. For the third order bosonic superfield equations, four types of integrable supersymmetric extensions are identified, including the B-type (trivial) supersymmetric modified Korteweg–de Vries equation, the supersymmetric Sharma-Tasso-Olver equation, and an A-type (non-trivial) supersymmetric potential Korteweg–de Vries equation. In the case of the fifth order bosonic supersymmetric systems, nine kinds of extensions are discovered, with six being B-type and three being A-type. Notably, several equations such as the supersymmetric Sawada-Kotera equation, the supersymmetric Kaup-Kupershmidt equation and the supersymmetric Fordy-Gibbon equation are classified as B-type extensions. Despite this classification, these supersymmetric systems are shown to be connected to linear integrable couplings. The findings have implications for various fields including string theory and dark matter and highlight the importance of understanding bosonic supersymmetric systems. The obtained supersymmetric systems are solved via bosonization method. Applying the bosonization procedure to every one of supersymmetric systems, one can find various dark equation systems. These dark equation systems can be solved by means of the solutions of the classical equations and some graded linear couplings including homogenous and nonhomogeneous symmetry equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.