Abstract
In this paper, we present triangle algebras: residuated lattices equipped with two modal, or approximation, operators and with a third angular point u, different from 0 (false) and 1 (true), intuitively denoting ignorance about a formula’s truth value. We prove that these constructs, which bear a close relationship to several other algebraic structures including rough approximation spaces, provide an equational representation of interval-valued residuated lattices; as an important case in point, we consider $\mathcal{L}^I$, the lattice of closed intervals of [0,1]. As we will argue, the representation by triangle algebras serves as a crucial stepping stone to the construction of formal interval-valued fuzzy logics, and in particular to the axiomatic formalization of residuated t-norm based logics on $\mathcal{L}^I$, in a similar way as was done for formal fuzzy logics on the unit interval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.