Abstract

Triangle algebras are equationally defined structures that are equivalent with certain residuated lattices on a set of intervals, which are called interval-valued residuated lattices (IVRLs). Triangle algebras have been used to construct triangle logic (TL), a formal fuzzy logic that is sound and complete w.r.t. the class of IVRLs. In this paper, we prove that the so-called pseudo-prelinear triangle algebras are subdirect products of pseudo-linear triangle algebras. This can be compared with MTL-algebras (prelinear residuated lattices) being subdirect products of linear residuated lattices. As a consequence, we are able to prove the pseudo-chain completeness of pseudo-linear triangle logic (PTL), an axiomatic extension of TL introduced in this paper. This kind of completeness is the analogue of the chain completeness of monoidal T-norm based logic (MTL). This result also provides a better insight in the structure of triangle algebras; it enables us, amongst others, to prove properties of pseudo-prelinear triangle algebras more easily. It is known that there is a one-to-one correspondence between triangle algebras and couples ( L , α ) , in which L is a residuated lattice and α an element in that residuated lattice. We give a schematic overview of some properties of pseudo-prelinear triangle algebras (and a number of others that can be imposed on a triangle algebra), and the according necessary and sufficient conditions on L and α .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.