Abstract
This paper presents several definitions of patterns in triadic data and results of experimental comparison of five triclustering algorithms on real-world and synthetic datasets. The evaluation is carried over such criteria as resource efficiency, noise tolerance and quality scores involving cardinality, density, coverage, and diversity of the patterns. An ideal triadic pattern is a totally dense maximal cuboid (formal triconcept). Relaxations of this notion under consideration are: OAC-triclusters; triclusters optimal with respect to the least-square criterion; and graph partitions obtained by using spectral clustering. We show that searching for an optimal tricluster cover is an NP-complete problem, whereas determining the number of such covers is #P-complete. Our extensive computational experiments lead us to a clear strategy for choosing a solution at a given dataset guided by the principle of Pareto-optimality according to the proposed criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.