Abstract
Social network data contains many hidden relationships. The most well known is the communities formed by users. Moreover, typical social network data, such as Twitter, can also be interpreted in terms of three-dimensional relationships; namely the users, issues discussed by the users, and terminology chosen by the users in these discussions. In this paper, we propose a new problem to generate co-clusters in these three dimensions simultaneously. There are three major differences between our problem and the standard co-clustering problem definition: a node can be a member of more than one clusters; all the nodes are not necessarily members of some cluster; and edges are signed and cluster are expected to have high density of positive signed edges, and low density of negative signed edges. We apply our method to the tweets of British politicians just before the Brexit referendum. Our motivation is to discover clusters of politicians, issues and the sentimental words politicians use to express their feelings on these issues in their tweets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.