Abstract
To overcome premature drug leakage and instability in drug delivery systems, we designed tri-stimuli responsive multiwalled carbon nanotubes covered by mesoporous silica graft poly(N-isopropylacrylamide-block-poly(2-(4-formylbenzoyloxy) ethyl methacrylate) multifunctional materials via disulfide linkages (MWCNTs@MSN-s-s-g-PNIPAM-b-PFBEMA). The multifunctional materials could covalently bind and physically load anticancer drug doxorubicin (DOX), and exhibited pH-, temperature- and reductant-induced multi-stimuli responsiveness, significantly enhancing drug loading capacity and improving the release dynamics of drug. The DOX-loaded multifunctional materials exhibited the optimal release behavior in cancer environments compared with in normal cells upon simultaneously triggered by these stimuli. It meant that the MWCNTs@MSN-s-s-g-PNIPAM-b-PFBEMA could serve as efficient gatekeepers to control the mesopore on–off and thus to modulate drug release. The multifunctional materials were proved to be low toxic, whereas the DOX-loaded counterparts had almost the same toxicity as free DOX to cancer cells. Therefore, the developed multifunctional materials can be used as promising drug controlled delivery platforms for cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.