Abstract

Abstract. In the framework of the EURODELTA-Trends (EDT) modeling experiment, several chemical transport models (CTMs) were applied for the 1990–2010 period to investigate air quality changes in Europe as well as the capability of the models to reproduce observed long-term air quality trends. Five CTMs have provided modeled air quality data for 21 continuous years in Europe using emission scenarios prepared by the International Institute for Applied Systems Analysis/Greenhouse Gas – Air Pollution Interactions and Synergies (IIASA/GAINS) and corresponding year-by-year meteorology derived from ERA-Interim global reanalysis. For this study, long-term observations of particle sulfate (SO42-), total nitrate (TNO3), total ammonium (TNHx) as well as sulfur dioxide (SO2) and nitrogen dioxide (NO2) for multiple sites in Europe were used to evaluate the model results. The trend analysis was performed for the full 21 years (referred to as PT) but also for two 11-year subperiods: 1990–2000 (referred to as P1) and 2000–2010 (referred to as P2). The experiment revealed that the models were able to reproduce the faster decline in observed SO2 concentrations during the first decade, i.e., 1990–2000, with a 64 %–76 % mean relative reduction in SO2 concentrations indicated by the EDT experiment (range of all the models) versus an 82 % mean relative reduction in observed concentrations. During the second decade (P2), the models estimated a mean relative reduction in SO2 concentrations of about 34 %–54 %, which was also in line with that observed (47 %). Comparisons of observed and modeled NO2 trends revealed a mean relative decrease of 25 % and between 19 % and 23 % (range of all the models) during the P1 period, and 12 % and between 22 % and 26 % (range of all the models) during the P2 period, respectively. Comparisons of observed and modeled trends in SO42- concentrations during the P1 period indicated that the models were able to reproduce the observed trends at most of the sites, with a 42 %–54 % mean relative reduction indicated by the EDT experiment (range of all models) versus a 57 % mean relative reduction in observed concentrations and with good performance also during the P2 and PT periods, even though all the models overpredicted the number of statistically significant decreasing trends during the P2 period. Moreover, especially during the P1 period, both modeled and observational data indicated smaller reductions in SO42- concentrations compared with their gas-phase precursor (i.e., SO2), which could be mainly attributed to increased oxidant levels and pH-dependent cloud chemistry. An analysis of the trends in TNO3 concentrations indicated a 28 %–39 % and 29 % mean relative reduction in TNO3 concentrations for the full period for model data (range of all the models) and observations, respectively. Further analysis of the trends in modeled HNO3 and particle nitrate (NO3-) concentrations revealed that the relative reduction in HNO3 was larger than that for NO3- during the P1 period, which was mainly attributed to an increased availability of “free ammonia”. By contrast, trends in modeled HNO3 and NO3- concentrations were more comparable during the P2 period. Also, trends of TNHx concentrations were, in general, underpredicted by all models, with worse performance for the P1 period than for P2. Trends in modeled anthropogenic and biogenic secondary organic aerosol (ASOA and BSOA) concentrations together with the trends in available emissions of biogenic volatile organic compounds (BVOCs) were also investigated. A strong decrease in ASOA was indicated by all the models, following the reduction in anthropogenic non-methane VOC (NMVOC) precursors. Biogenic emission data provided by the modeling teams indicated a few areas with statistically significant increase in isoprene emissions and monoterpene emissions during the 1990–2010 period over Fennoscandia and eastern European regions (i.e., around 14 %–27 %), which was mainly attributed to the increase of surface temperature. However, the modeled BSOA concentrations did not linearly follow the increase in biogenic emissions. Finally, a comprehensive evaluation against positive matrix factorization (PMF) data, available during the second period (P2) at various European sites, revealed a systematic underestimation of the modeled SOA fractions of a factor of 3 to 11, on average, most likely because of missing SOA precursors and formation pathways, with reduced biases for the models that accounted for chemical aging of semi-volatile SOA components in the atmosphere.

Highlights

  • Particulate matter (PM) is one of the greatest environmental concerns, affecting climate and visibility, and having deleterious effects on human health (Cohen et al, 2017; Pope and Dockery, 2006; WHO, 2013)

  • Five chemical transport models (CTMs) have provided modeled air quality data for 21 continuous years in Europe using emission scenarios prepared by the International Institute for Applied Systems Analysis/Greenhouse Gas – Air Pollution Interactions and Synergies (IIASA/gas – Air Pollution Interactions and Synergies (GAINS)) and corresponding year-byyear meteorology derived from ERA-Interim global reanalysis

  • We investigate the trends in secondary inorganic aerosol (SIA) and secondary organic aerosol (SOA) in Europe during the 1990– 2010 period calculated by five CTMs that participated in the EURODELTA-Trends exercise (Colette et al, 2017)

Read more

Summary

Introduction

Particulate matter (PM) is one of the greatest environmental concerns, affecting climate and visibility, and having deleterious effects on human health (Cohen et al, 2017; Pope and Dockery, 2006; WHO, 2013). Particulate matter can be directly emitted from different sources, e.g., power plants, industry and transport, PM with an aerodynamic diameter below 2.5 μm (PM2.5) is mainly of secondary origin (Crippa et al, 2014), i.e., formed in the atmosphere after various reactions involving gas-phase precursors such as nitrogen oxide (NO2), sulfur dioxide (SO2), ammonia (NH3), volatile organic compounds (VOCs) and several oxidants (e.g., OH, O3 and NO3). Particles in this size range can penetrate deeply into the respiratory system leading to respiratory and cardiovascular problems. Formation of ammonium nitrate usually occurs when the molar concentration of NH3 + NH+4

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call