Abstract

AbstractThe surface doping of a metal oxide can tune its catalytic performance, but it remains unclear how the tuning depends on the dopant type and the surface facet. Herein we study doped Co3O4 (1 1 1) and (3 1 1) surface facets using first‐principles density functional theory (DFT) to obtain general descriptors for oxygen reactivity (which include vacancy formation energy and hydrogen adsorption energy) and correlate them to ethane C−H activation energy as a measure of the catalytic performance. The periodic trends of the dopants are investigated for a total of 20 dopants, namely, the elements from K to Ge. We find strong linear correlations between the oxygen reactivity descriptors and the computed energy barriers. We also discover a strong surface facet sensitivity among certain dopants such that different surface orientations and sites lead to different or even the opposite dopant performance. This work provides a useful guide for dopant performance in ethane activation on the two very different Co3O4 surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call