Abstract
The mode-1 x-ray drive asymmetry of indirect-drive Inertial Confinement Fusion(ICF) implosions at the National Ignition Facility(NIF) has been estimated using a simple static ViewFactor model. The model takes as input measured laser performance data in the foot and peak, the hohlraum configuration, and laser to hohlraum pointing. These estimates are compared with neutron time-of-flight measurements of directionality and magnitude of the resultant hotspot bulk velocity (~20–100 μm/ns) for 39 NIF shots using High Density Carbon (HDC) ablators and show strong correlation on a statistically significant number of shots. The most important factors identified so far are random quad-to-quad peak power laser imbalances, the presence of lossy diagnostic windows and gaps on the hohlraum waist, capsule sag and capsule thickness mode 1. Typical mode-1 asymmetry in drive is currently ~0.5% for many of these sources on their own and, when summed, can lead to a neutron hotspot velocity of up to 100 μm /ns and a reduction in yield of 35% for current NIF DT layered implosions. Our goal is to identify, quantify and mitigate all potential sources of mode-1 asymmetry (which also include target and laser alignment imperfections, foot power and Cross Beam Energy Transfer imbalances) to enable higher quality implosions on NIF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.