Abstract
Cylindrical implosion experiments are used to directly measure instability growth in a convergent geometry, providing a wealth of data for model validation. Double cylinders are a natural extension of the platform and enable measurements at a classically unstable interface, the outer surface of the inner cylinder, which experiences no ablative stabilization from the laser drive. However, the utility of this platform relies upon maintaining adequate axial uniformity of the inner cylinder during the implosion. Although previous smaller-scale double cylinder experiments exhibited acceptable levels of axial uniformity, radiation-hydrodynamics simulations of larger-scale double cylinders predict more axial non-uniformity induced by the impedance mismatch as the shock wraps around the axial ends of the inner cylinder. A mechanism to reduce axial non-uniformity in these larger double cylinder implosions is presented, and preliminary experimental data confirms the efficacy of the selected mitigation approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.