Abstract
Sleep is a very important part of life. Lack of sleep or sleep disorder can cause a negative impact on day to day life and can have long term serious consequences. In this work, we propose an end-to-end trainable neural network for automated sleep arousal scoring. The network consists of two main parts. Firstly, a trend statistics network computes the moving average of the filtered signals at different scales. Secondly, we propose a channel invariant EEG network to detect the arousals in any Electroencephalography (EEG) channel. Finally, we combine the features from various channels through a convolution network and a bi-directional long short-term memory to predict the probability of arousal. Further, we propose an objective function that uses only respiratory effort related arousal (RERA) and non-arousal regions to optimize the network. We also propose a method to estimate the respiratory disturbance index (RDI) from the probability predicted by the network. Evaluation on Physionet Challenge 2018 database shows that the proposed method detects RERA with mean area under the precision-recall curve (AUPRC) of 0.50 in a 10-fold cross validation setup. The mean absolute error of RDI prediction is 6.11, while a two-class RDI severity prediction yields a specificity of 75% and a sensitivity of 83%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.