Abstract
Trench formation and corner rounding are the key processes to demonstrate high-voltage trench-based vertical GaN devices. In this work, we developed a damage-free corner rounding technology combining Tetramethylammonium hydroxide wet etching and piranha clean. By optimizing the inductively coupled plasma dry etching conditions and applying the rounding technology, two main trench shapes were demonstrated: flat-bottom rounded trench and tapered-bottom rounded trench. TCAD simulations were then performed to investigate the impact of trench shapes and round corners on device blocking capability. GaN trench metal-insulator-semiconductor barrier Schottky rectifiers with different trench shapes were fabricated and characterized. A breakdown voltage over 500 V was obtained in the device with flat-bottom rounded trenches, compared to 350 V in the device with tapered-bottom rounded trenches and 150 V in the device with non-rounded trenches. Both experimental and simulation results support the use of rounded flat-bottom trenches to fabricate high-voltage GaN trench-based power devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.