Abstract

Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis, by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.

Highlights

  • The desiccation tolerant grass, Tripogon loliiformis, is a small, tufted diploid grass and member of the poaceae family of cereals that is native to Australia and New Guinea and grows in rocky outcrops and nutrient poor soils with low water retention[1]

  • Fundamental discoveries of the tolerance strategies utilised by resurrection plants include the early detection of dehydration and shut-down of photosynthesis, the presence of extensive ROS scavenging systems, even in the hydrated state, the accumulation of sugars, as well as the enrichment of transcripts associated with cell wall plasticity[3,4,5,6,7,8,9,10,11,12]

  • Tripogon loliiformis tissues are revitalised from the desiccated state Despite significant research on resurrection plants, little is known of the fate of individual cells throughout desiccation and rehydration

Read more

Summary

Introduction

The desiccation tolerant grass, Tripogon loliiformis, is a small, tufted diploid grass and member of the poaceae family of cereals that is native to Australia and New Guinea and grows in rocky outcrops and nutrient poor soils with low water retention[1]. In these microenvironments, T. loliiformis is constantly subjected to environmental extremes and as such has evolved remarkable mechanisms for survival; plants live even after snap-freezing with liquid nitrogen or heating for short periods at temperatures > 60°C[2]. Transcripts and metabolites typically associated with gene profiles observed in seeds are often detected within vegetative tissues, leading to the hypothesis that resurrection plants conform to a dormant “seed-like” state upon drying [3,4,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call