Abstract

Urban trees are a critical part of the ‘green infrastructure’ intended to make our growing cities more sustainable in an era of climate change. The potential for urban trees to modify microclimates and thereby reduce building energy use and the associated carbon emissions is a commonly cited ecosystem service used to justify million tree planting campaigns across the US. However, what we know of this ecosystem service comes primarily from unvalidated simulation studies. Using the first dataset of actual heating and cooling energy use combined with tree cover data, we show that contrary to the predictions of the most commonly used simulations, trees in a cool climate city increase carbon emissions from residential building energy use. This is driven primarily by near east (<20 m from building) tree cover. Further analysis of urban areas in the US shows that this is likely the case in cool climates throughout the country, encompassing approximately 39% of the US population and 62% of its area (56%, excluding Alaska). This work adds geographic nuance to our understanding of how urban shade trees affect the carbon budget, and it could have major implications for tree planting programs in cool climates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call