Abstract

From a forest management stand point, it is crucial to know which ecological processes are most likely to drive changes in tree species distributions and abundance under warming climate conditions. In this study, we simulated forest dynamics in a 703,580 km2 territory that straddles the boreal and temperate broadleaved forest biomes in the province of Québec (Canada), under a RCP 8.5 climate change scenario. The objective was to evaluate how future forest composition is sensitive to variation in four potential drivers: fire regimes, harvesting regimes, the capacity of tree species to persist under warmer climate conditions, and species capabilities for long-distance colonization. The results indicate that forest composition in 2100 is most sensitive to variation in the parameters controlling species persistence when conditions become warmer or dryer than the conditions found in their current range. Concretely, this points to avenues of research to improve the accuracy of our predictions regarding the impacts of climate change on forest composition. For instance, we should further investigate the underlying ecological (competition) or physiological (drought stresses) processes that influence tree species persistence at the receding edge of their current distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.