Abstract

Tree resin is a macroergic component that has not yet been used for energy purposes. The main goal of this work is to determine the energy content of the resin of spruce, pine, and larch and of wood components—pulp and turpentine. The combustion heat of resin from each timber was determined calorimetrically. Approximately 1.0 g of liquid samples was applied in an adiabatic calorimeter. The energy values of the tree resin (>38.0 MJ·kg−1) were 2.2 and 2.4 times higher than that of bleached and unbleached cellulose, and the highest value was recorded for turpentine (>39.0 MJ·kg−1). Due to the high heating values of the resin, it is necessary to develop approaches to the technological processing of the resin for energy use. The best method of resin tapping is the American method, providing 5 kg of resin ha−1 yr−1. The tapped resin quantity can be raised by least 3 times by applying a stimulant. Its production cost compared to other feedstocks was the lowest. Tree resin can be applied as a means of mitigating global warming and consequently dampening climate change by reducing the CO2 content in the atmosphere. One tonne of tree resin burned instead of coal spares the atmosphere 5.0 Mt CO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call