Abstract

We developed and tested a wind-dispersal model of tree recruitment into burns from living sources at the fire edge or from small unburned residual stands. The model was also tested on recruitment of serotinous Pinus banksiana Lamb. within a burn. The model assumed that source strength is proportional to basal area density and that an individual (point source) recruitment curve can be expressed as a lognormal distribution. The model made significant predictions of the recruitment curves of Engelmann spruce (Picea engelmannii Parry ex Engelm.), white spruce (Picea glauca (Moench) Voss), and balsam fir (Abies balsamea (L.) Mill.) to distances as great as 2.0 km, although it tended to underpredict Abies and overpredict Picea. The model gave significant prediction of recruitment for jack pine (Pinus banksiana) within burns with seeds derived from aerial seed banks, and of white spruce and tamarck (Larix laricina (Du Roi) K. Koch) up to 100 m from residual stands. By forestry standards, burns are poorly stocked by those species that must obligately recruit from edges. In large fires, adequate stocking by a species such as white spruce that had 5 m2/ha of basal area would be limited to about 70 m from the edge. Small residual stands are expected to supply about half of all the recruits of white spruce or fir at distances exceeding about 800 m from a nominal burn edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.