Abstract

Old trees are remarkable for their ability to endure for centuries or even millennia, acting as recordkeepers of historical climate and custodians of genetic diversity. The secret to their longevity has long been a subject of fascination. Despite the challenges associated with studying old trees, such as massive size, slow growth rate, long lifespan and often remote habitat, accumulating studies have investigated the mechanisms underlying tree aging and longevity over the past decade. The recent publication of high-quality genomes of long-lived tree species, coupled with research on stem cell function and secondary metabolites in longevity, has brought us closer to unlocking the secrets of arboreal longevity. This review provides an overview of the global distribution of old trees and examines the environmental and anthropogenic factors that shape their presence. We summarize the contributions of physiological characteristics, stem cell activity, and immune system responses to their extraordinary longevity. We also explore the genetic and epigenetic 'longevity code', which consists of resistance and defense genes, DNA repair genes and patterns of DNA methylation modification. Further, we highlight key areas for future research that could enhance our understanding of the mechanisms underlying tree longevity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.