Abstract

Objectives: To verify the contribution of N-acetylcysteine (NAC) as an antioxidant drug in the therapy of diabetes, helping to reduce the deleterious effects resulting from oxidative stress associated with the hyperglycemic state. Materials and Methods: The animals were divided into normal (saline, 25 mg/kg NAC, and 75 mg/kg NAC) and diabetic rats (saline, 25 mg/kg NAC, and 75 mg/kg NAC) with five rats per group, and were treated or four weeks. Diabetes induction was performed by intraperitoneal injection of alloxan after fasting for 12 hours. Subsequently, glucose solution was used to promote wear of the pancreatic beta cells. Blood parameters such as glucose, glycated hemoglobin, hepatic and renal biomarkers, and butyrylcholinesterase activity were determined by commercial kits. Catalase, glutathione peroxidase, and superoxide dismutase activities were measured using spectrophotometric techniques, while glutathione and malondialdehyde levels were determined by chromatographic techniques. Results: NAC had no significant differences on glycemic, hepatic, renal, and oxidative stress biomarkers. Superoxide dismutase activity was significantly higher ( P P Conclusion: NAC supplementation did not re-establish the antioxidant system and consequently the deleterious effects of diabetes did not decrease. Diabetic groups that received NAC demonstrated that superoxide dismutase activity was indirectly linked to the levels of butyrylcholinesterase. More studies are necessary to investigate the action of NAC on superoxide dismutase and butyrylcholinesterase activities in the diabetic state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call