Abstract
Purpose: The main purpose of this study is to perform a treatment planning study on a synchronous bilateral non-small cell lung cancer case using three treatment modalities: uniform scanning proton therapy, RapidArc, and intensity modulated radiation therapy (IMRT). Methods : The maximum intensity projection (MIP) images obtained from the 4 dimensional-computed tomography (4DCT) scans were used for delineation of tumor volumes in the left and right lungs. The average 4D-CT was used for the treatment planning among all three modalities with identical patient contouring and treatment planning goal. A proton therapy plan was generated in XiO treatment planning system (TPS) using 2 fields for each target. For a comparative purpose, IMRT and RapidArc plans were generated in Eclipse TPS. Treatment plans were generated for a total dose of 74 CGE or Gy prescribed to each planning target volume (PTV) (left and right) with 2 CGE or Gy per fraction. In IMRT and RapidArc plans, normalization was done based on PTV coverage values in proton plans. Results: The mean PTV dose deviation from the prescription dose was lower in proton plan (within 3.4%), but higher in IMRT (6.5% to 11.3%) and RapidArc (3.8% to 11.5%) plans. Proton therapy produced lower mean dose to the total lung, heart, and esophagus when compared to IMRT and RapidArc. The relative volume of the total lung receiving 20, 10, and 5 CGE or Gy (V20, V10, and V5, respectively) were lower using proton therapy than using IMRT, with absolute differences of 9.71%, 22.88%, and 39.04%, respectively. The absolute differences in the V20, V10, and V5 between proton and RapidArc plans were 4.84%, 19.16%, and 36.8%, respectively, with proton therapy producing lower dosimetric values. Conclusion : Based on the results presented in this case study, uniform scanning proton therapy has a dosimetric advantage over both IMRT and RapidArc for a synchronous bi-lateral NSCLC, especially for the normal lung tissue, heart, and esophagus sparing. Further studies on a large group of patients with bi-lateral lung cancer are required to validate the dosimetric superiority of proton therapy over the IMRT and RapidArc. ------------------------------- Cite this article as: Rana S, Pokharel S, Zheng Y, Zhao L, Risalvato D, Vargas C, Cersonsky N. Treatment planning study comparing proton therapy, RapidArc and intensity modulated radiation therapy for a synchronous bilateral lung cancer case. Int J Cancer Ther Oncol 2014; 2 (2):020216. DOI: 10.14319/ijcto.0202.16
Highlights
Lung cancer is the second most commonly diagnosed cancer in the US
Proton therapy produced the mean planning target volume (PTV) dose closest to the prescription dose, whereas the mean PTV doses in the intensity modulated radiation therapy (IMRT) and RapidArc plans were higher from the prescription dose by 6.5% to 11.3% in the IMRT plans and by 3.8% to 11.5% in the RapidArc plans
In comparison to the IMRT, the V20, V10, and V5 were lower in the proton plans by absolute differences of 9.71%, 22.88%, and 39.04%, respectively
Summary
Lung cancer is the second most commonly diagnosed cancer in the US. Non-small cell lung cancer (NSCLC) is considered as the leading killer among different types of lung cancer.[1] Medically inoperable NSCLC patients are typically treated. Corresponding author: Suresh Rana; Department of Medical Physics, ProCure Proton Therapy Center, Oklahoma City, Oklahoma, USA
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Cancer Therapy and Oncology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.