Abstract

The effectiveness of USEPA-registered algaecides for managing algae in lakes and reservoirs has been extensively evaluated in laboratory studies, mesocosm studies and in situ treatment. However, the use of these algaecides in marine environments for the management of dinoflagellates and associated toxins remains largely unknown. Karenia brevis is a toxic dinoflagellate that causes red tides in the Gulf of Mexico. In this study, we investigated the efficacy of six USEPA-registered algaecides, three copper-based and three peroxide-based, on treating toxic K. brevis with a natural bloom density (1.79 × 107 cells/L). Our results indicate that the application of as low as 0.31–0.34 mg Cu/L led to a significant decrease of K. brevis cells within 24 h after treatment, while peroxide-based algaecides required a relatively higher concentration for the effective removal of K. brevis cells (4.89–7.08 mg H2O2/L), but still lower than maximum label rate. Total brevetoxin levels 72 h after treatment revealed that 1.00 mg Cu/L for Algimycin® PWF, 6.48 mg H2O2/L for PAK® 27 and 7.08 mg H2O2/L for Oximycin® P5 had the greatest impact on decreasing toxin levels. The correlation analysis showed that brevetoxin reduction rate was significantly positively related with the peroxide-based algaecide exposure concentration, which is caused by the oxidation of hydroxyl radicals produced by hydrogen peroxide. The degradation dynamics of the three peroxide-based algaecides revealed that salinity, microorganisms and organic matter (≥ 0.2 μm) impact the stability of hydrogen peroxide, and Oximycin® P5 showed the highest stability among tested peroxide-based algaecides with a degradation rate of 0.467 mg/d in natural seawater. Hence, our laboratory work provided new insights into potential emergency treatment methods for immediate mitigation of K. brevis and brevetoxins. More work on the fate and persistence of algaecide active ingredients and phycotoxins, effects of site characteristics, and pilot studies on marine non-targets are still needed before safe application of this method for HABs in marine systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call