Abstract
The aim of this study was to develop the optimum integrated treatment system for slurry type swine wastewater through field testing. Although composting and liquid composting are the most desirable processes to treat swine wastewater, inadequate composting has been blamed as critical non-point source pollutants. In the area with limited crop land and grass land, the most feasible method to handle slurry type swine wastewater would be that the solids portion from the solids/liquid separation process is treated by composting and then the liquid portion is treated by a series of wastewater treatment processes, including physicochemical treatment system and biological nutrient removal systems such as the modified Ludzack Ettinger (MLE) process and MLE process coupled with a membrane, to satisfy the different effluent criteria. When using the appropriate solids/liquid separation system, the removal efficiency of SS, COD(Cr), and TKN was 92.4%, 73.6%, and 46.0%, respectively and the amount of bulking agent required for composting and organic loading rate for the following wastewater treatment system can be reduced by 94.8% and 84.7%, respectively. When treating the effluent from solids/liquid separation process by MLE process, the optimal volume fraction for denitrification was 20% of total reactor volume and the optimum ratio of F/M and F(N)/M were increased with increase of C/N ratio. Since the effluent quality of MLE process is not enough to discharge, the DAF process was operated with addition of FeCl3 and cationic polyelectrolyte. The effluent from the DAF process was treated in the MLE process coupled with a crossflow ultrafiltration membrane to satisfy more stringent effluent criteria. When external carbon source is added to keep 6.0 of C/N ratio, the efficiency of denitrification is best. The optimum linear velocity and transmembrane pressure for MBR process was 1.8 m/sec and 2.1 atm, respectively. By addition of external carbon source, nitrogen compounds, especially NOx-N, were considerably removed. And by addition of powdered activated carbon, the removal efficiency of COD(Cr) and COD(Mn) and the membrane flux were increased dramatically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.