Abstract

This is the first large-scale field pilot study that examined the feasibility and effectiveness of petroleum coke (PC), produced by a Fluid Coking Process, as an adsorbent for oil sands process water (OSPW) treatment. The pilot program consisted of an inline series of two reactors (pipeline reactor 1, and batch reactor 2) and lasted for approximately 4 months. The quality of treated OSPW as a function of residence time in the PC deposit under natural climatic conditions was assessed by looking at changes in organic compounds (acid extractable fraction (AEF), dissolved organic carbon (DOC), etc.), vanadium, and other trace element concentrations, major ions, conductivity, total suspended solids (TSS), pH and toxicity. The results indicated that the AEF adsorption by PC followed pseudo-second order kinetics and the overall combined removal efficiency of AEF was greater than 80%. Reactor 1 showed higher AEF removal than Reactor 2. DOC decreased about 50% after 4 weeks of retention in the PC deposit. An increase of vanadium concentration after PC contact indicated that vanadium leaching occurred. However, with increased residence time in the PC deposit, vanadium concentration decreased in the cells and tanks by 42% and 98%, respectively. Filtration through the PC deposit reduced the TSS in OSPW to less than laboratory detectable limits. Unlike untreated OSPW, treated OSPW did not show an acute toxic response based on whole effluent toxicity testing using trout, zooplankton, and bacteria. This study demonstrated that PC adsorption is a potentially commercially viable technology for highly efficient treatment of OSPW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call