Abstract

Naphthenic acids, NAs (classical formula CnH2n+zO2, where n is the carbon numbers, z represents zero or negative even integers), found in oil sands process waters (OSPWs), are toxic to aquatic environments depending upon several factors such as pH, salinity, molecular size and chemical structure of NAs. Among various available methods, biodegradation seems to be generally the most cost-effective method for decreasing concentrations of NAs (n ≤ 21) and reducing their associated toxicity in OSPW, however the mechanism by which the biodegradation of NAs occurs are poorly understood. Ozonation is superior over biodegradation in decreasing higher molecular weight alkyl branched NAs (preferentially, n ≥ 22, −6 ≥ z ≥ −12) as well as enabling accelerated biodegradation and reducing toxicity. Photolysis (UV at 254 nm) is effective in cleaving higher molecular weight NAs into smaller fragments that will be easier for microorganisms to degrade, whereas photocatalysis can metabolize selective NAs (0 ≥ z ≥ −6) efficiently and minimize their associated toxicity. Phytoremediation is applicable for metabolizing specific NAs (O2, O3, O4, and O5 species) and minimizing their associated toxicities. Petroleum coke (PC) adsorption is effective in reducing the more structurally complex NAs (preferentially 12 ≥ n ≥ 18 and z = −10, −12) and their toxicity in OSPWs, depending upon the PC content, pH and temperature. Several factors have influence on the degradation of NAs in OSPWs and aquatic environments, which include molecular mass and chemical structure of NAs, sediment structure, temperature, pH, dissolved oxygen, nutrients, and bacteria types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call