Abstract

Two species of microalgae (Chlorella vulgaris and Dunaliella tertiolecta) as the biological agents along with ZnO nanoparticles as the photocatalyst were used to investigate the hydrocarbon removal efficiency from oily water samples. Firstly, the toxicities of the photocatalyst, normal paraffine hydrocarbons and their combination towards the microalgae were evaluated in terms of cell growth and chlorophyll content. The capability of algae to absorb the nanoparticles in the aqueous phase was confirmed by FT-IR spectroscopy. Then, the hydrocarbon removal efficiencies of the algae, photocatalyst and the combined photocatalyst-algae system were studied by measuring the residual hydrocarbon content of the samples. Results indicated that despite of the growth inhibitory effects of n-alkanes and nanoparticles on the examined algae, both of them could survive in the system. Dunaliella tertiolecta was more affected by normal paraffins while Chlorella vulgaris was more sensitive to ZnO nanoparticles. Both of the studied species were capable of hydrocarbon removal and the efficiency of Chlorella vulgaris was superior. The combination of algae and nanoparticles was also proved to have a synergistic effect on degradation of the hydrocarbon content of the medium. The obtained removal efficiencies for initial hydrocarbon concentrations of 0.05%, 0.1% and 0.5% (v/v) were 100%, 78% and 42% for Dunaliella tertiolecta-ZnO and 100%, 93% and 88% for Chlorella vulgaris- ZnO system, respectively. It can be concluded that the examined microalgae-nanoparticle system can be considered as a final polishing step in hydrocarbons removal from oily waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call