Abstract

Food Supply Chains (FSCs) have become increasingly complex with the average distance between producers and consumers rising considerably in the past two decades. Consequently, FSCs are a major source of carbon emissions and reducing transportation costs a major challenge for businesses. To address this, we present a mathematical model to promote the three core dimensions of sustainability (economic, environmental, and social), based on the Mixed-Integer Linear Programming (MILP) method. The model addresses the environmental dimension by intending to decrease the carbon emissions of different transport modes involved in the logistics network. Several supply chain network characteristics are incorporated and evaluated, with a consideration of social sustainability (job generation from operating various facilities). The mathematical model's robustness is demonstrated by testing and deploying it to a variety of problem instances. A real-life case study (Norwegian salmon supply chain) helps to comprehend the model's applicability. To understand the importance of optimizing food supply networks holistically, the paper investigates the impact of multiple supply chain permutations on total cost, demand fluctuations and carbon emissions. To address fluctuations in retail demand, we undertook sensitivity analysis for variations in demand, enabling the proposed model to revamp Norway's salmon supply chain network. Subsequently, the results are thoroughly examined to identify managerial implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.